Maxima で綴る数学の旅

紙と鉛筆の代わりに、数式処理システムMaxima / Macsyma を使って、数学を楽しみましょう

-Maxima入門- 総積を作る関数product(exp,var,max) 基本編

 

f:id:jurupapa:20130601041425j:plain

 

Stockmansmolen

Henneaulaan 164Zaventem

にほんブログ村 科学ブログ 数学へ
にほんブログ村

総積は階乗を一般化したものです。総積を作る関数product(exp,var,max)という式で、expの中のvarを自然数1~maxで変化させた時の全てのexpの積を表します。

次の式は、10の階乗と同じはずです。
(%i1) product(a,a,1,10);

$$ \tag{%o1} 3628800 $$
(%i2) 10!;

$$ \tag{%o2} 3628800 $$
ちゃんと一致しました。

次の式ではexpとして\( a[k]  \)の中のkを1~nで変化させた全ての式の積です。nが決まっていないので計算は行われません。
(%i3) product(a[k],k,1,n);

$$ \tag{%o3} \prod_{k=1}^{n}{a_{k}} $$

この式でn=10であれば以下のようになります。
(%i4) %,n=10;

$$ \tag{%o4} \prod_{k=1}^{10}{a_{k}} $$

nが決まったので計算を進めることができます。
(%i5) %,nouns;

$$ \tag{%o5} a_{1}\,a_{2}\,a_{3}\,a_{4}\,a_{5}\,a_{6}\,a_{7}\,a_{8}\,a_{9}\,a_{10} $$

ここで具体的に\( a[n] = n  \)とすれば、階乗の定義と一致します。
(%i6) %,a[n]:=n;

$$ \tag{%o6} 3628800 $$
(%i7)

This is a test.
天気