Maxima で綴る数学の旅

紙と鉛筆の代わりに、数式処理システムMaxima / Macsyma を使って、数学を楽しみましょう

数学

-数学- ガロア群計算の体論的な意味

これはパピヨンではないです。 今回行ったことを普通の体論で考えるとどうなるのでしょうか。 以下の2つを参考にしながら以下にまとめてみました。 ガロアの時代 ガロアの数学〈第2部〉数学篇 (シュプリンガー数学クラブ) 作者: 彌永昌吉 出版社/メーカー: …

-数学- 命題I, ガロア群の計算

命題Iでは与えられた方程式の解\(\alpha, \beta, \gamma\ldots\)がm個ある場合、根の置換の群で以下の2つの性質を持つものがあるとしています:(1)その群の置換で値の変わらない根の関数が有理的に表されること、(2)有理的に表さられる根の関数はこの群の置…

-数学- 補助定理III, ガロア群の計算

補助定理IIIでは、全ての根\(\alpha, \beta, \gamma\ldots\)が補助定理IIで導入したVの有理関数f(V)として表されることを述べています。また証明として実際に有理関数f(V)を構成する方法が述べられています。 補助定理IIで導入したVは\(\alpha, \beta, \gamm…

-数学- 補助定理IV, ガロア群の計算

[1]方程式のガロア群の求め方 – 五次元世界の冒険の順番に従い、先に補助定理IVの計算を行います。 補助定理IVでは、補助定理IIのVが満たす方程式の作り方を示し、Vの最小多項式を求める方法を示します。またVに現れる根の置換によって得られる値V1(=V), V2,…

-数学- 補助定理II, ガロア群の計算

補助定理IIでは、与えられた方程式の根\(\alpha, \beta, \gamma\ldots\)の一次結合\(V=A\,\alpha+B\,\beta+C\,\gamma+\cdots\)を作り、一次結合に現れる根の全ての置換でVの値が異なるようにすることが出来る、と述べています。 これ、深い意味があるようで…

-数学- ガロア群の計算の流れ

ガロアの時代 ガロアの数学 第二部 数学篇 (シュプリンガー数学クラブ) 作者: 彌永昌吉 出版社/メーカー: 丸善出版 発売日: 2012/06/05 メディア: 単行本(ソフトカバー) この商品を含むブログを見る この本の第3章にフランス語から著者が翻訳したガロアの…

-数学- ガロア群の計算、初めに

昔からガロア理論の本を読んで、不満に思うことがありました。それは、ガロア群の具体的な求め方です。方程式の係数だけが分かっていて、解は分からない前提の議論のはずなのですが、大抵の本では、 ガロア群の具体的な例は、方程式を解いてからそれらの解の…

-Maxima入門、数学- 多項式f(x)のmod p(x)での逆元

これから引続くいくつかの記事では主に1変数有理係数方程式を扱う予定です。 今回は二つの有理係数の多項式p(x)とf(x)が与えられた時、f(x)のmod p(x)での逆元g(x)を求めます。f(x)の逆元g(x)とは、f(x)*g(x)=1 (mod p(x))となるような有理係数の多項式g(x)…

-数学- デデキントのイータ関数の保型性と(重さ2の)アイゼンシュタイン級数

コンコルド 楕円関数シリーズの際にも紹介した下記の本、楽しいです。この本にはデデキントのイータ関数の保型性が、重さ2のアイゼンシュタイン級数(の類似)と関係していることが書いてあります。 楕円曲線と保型形式 作者: N.コブリッツ,上田勝 出版社/…

-数学- 楕円関数に関する参考文献

数論に関係した楕円関数の勉強に適した文献をリストします。今回の楕円関数シリーズにはこれらの本やネット上の資料が非常に参考になりました。 楕円関数概観 ―楕円積分から虚数乗法まで― 作者: 三宅克哉 出版社/メーカー: 共立出版 発売日: 2015/06/25 メデ…

-数学- ワイエルストラスのペー関数の級数展開に現れる係数の関係とアイゼンシュタイン級数

アイゼンシュタイン級数について勉強していると、アイゼンシュタイン級数\( E_{2\,k}\left(\tau\right), k\geq 4 \) は\(E_4\left(\tau\right), E_6\left(\tau\right) \)で生成される、などという日本語を目にします。実際、Wikipedia日本語版のアイゼンシュ…

-数学- 楕円曲線の加法と複素平面上の(普通の)加法

数論が好きなみなさんはきっと楕円曲線について勉強し、楕円曲線上の加群を知っていることでしょう。楕円曲線上の2点の和は、この2点を結ぶ直線と楕円曲線とが交わる第3の点のx軸対称の点とする、というものです。楕円曲線そのものがx軸対称なので、和の…

-数学- 楕円曲線、平行四辺形、トーラスをつなぐペー関数

前の記事、 で求めたペー関数の微分方程式 $$ \notag \left(\frac{d}{d\,z}\,\wp\left(z , w_{1} , w_{2}\right)\right)^2=-140\,G_{6}(w_{1},w_{2})-60\,G_{4}(w_{1},w_{2})\,\wp\left(z , w_{1} , w_{2}\right)+4\,\wp\left(z , w_{1} , w_{2}\right)^3 $$…

-数学- ワイエルストラスのペー関数が満たす微分方程式

楕円関数としてワイエルストラスのペー関数を勉強しています。ペー関数のローラン級数展開を得ることができたので、これを使って、ペー関数の微分、ペー関数の2乗、3乗、ペー関数の微分の2乗の最初のいくつかの項を具体的に求めます。 またその結果として…

-数学- 複素関数論の楕円関数への応用

今回はMaximaは使いません。計算がないからです。 楕円関数は複素平面上で定義された特定の定義を持つ関数です。いわゆる特殊関数の一つです。複素関数論を勉強すると様々な一般的な結果を学びますが、その一つにリュウビルの定理というものがあります。そし…

-数学- ワイエルシュトラスのペー関数のローラン展開

ワイエルシュトラスのペー関数をローラン展開してみます。ローラン展開といっても、\(\frac{1}{z^2}\)の項はそのまま、総和の部分をべき級数に展開することになります。ここでも以下の記事で定義したペー関数関連の道具は全て読み込み済みとします。 いきな…

-数学- ワイエルストラスのペー関数は2重周期関数

ペー関数の定義(%o1)をパッとみて、これをzの関数と見たとき、周期が\( w_1, w_2 \)の2重周期関数だと、簡単に見抜くことはできません。今回はこの2重周期性を証明して見ます。 以下のMaximaセッションではペー関数に関する(前回記事で紹介した)定義はす…

-数学- ワイエルシュトラスのペー関数

ワイエルストラスのペー関数をMaximaで実装して、いくつかの性質を調べてみます。式を綺麗に表示したり、複素平面上の格子点に渡る和の定義など、結構準備があります。 (%i1) load(to_poly_solve)$ 以下はペー関数をドイツ語の飾り文字で表示するための準備…

-数学- 楕円、楕円積分、楕円関数、ヤコビ、ワイエルシュトラス、2重周期性、楕円曲線

楕円、楕円積分、楕円関数、ヤコビのsn(), cn(), ワイエルストラスのペー関数、2重周期性、楕円曲線とその上の加法演算、、、 数論を勉強していると、楕円曲線はよく登場します。例えば有名なフェルマーの最終定理は、フライにより楕円曲線と保型形式の対応…

-数学- 論理式の簡略化

品川プリンス では最初に限定子除去(Quantifier Elimination)の手法を用いてハートの形に見える代数曲線の、xの範囲を求めました。その範囲を表す論理式を手で簡約化した、と書きました。その記事を書いた瞬間、心に引っかかるものがあったのですが、とりあ…

-数学- ハートのえくぼ、代数曲線の孤立点

パピヨンと秋 以前掲載した記事: に、コメントを頂きました(コメントは出来れば普通に書いて頂いて良いのですが、、、)。コメントの内容を要約すると、(%o1)の方程式で表される代数曲線はハートの形を描くが、実は見えない特異点(孤立点)が含まれる。そ…

-数学- Drawパッケージで塗り絵をする方法

パピヨン 前の記事: のコメント欄に不思議なコメントを頂きました。おそらく読み解いてみると、コメントに示されたURLの示す画像に含まれる2変数24次の代数方程式について、xとyを適当に動かしたときに、左辺の値が負となる領域を描き、塗りつぶせ、という…

-数学- 佐藤テイト予想(テイラーの定理)の計算による確認(虚数乗法の場合)

肉球 佐藤テイト予想が成立するためには「虚数乗法を持たない楕円曲線に対して」という条件が付いていました。もう一度楕円曲線版の佐藤テイト予想・テイラーの定理を再掲します。 佐藤テイト予想・テイラーの定理 虚数乗法を持たない楕円曲線Eに対して、法p…

-数学- 佐藤テイト予想(テイラーの定理)の計算による確認(その3)

お台場の夕日 今回はラマヌジャンの保型形式に対する佐藤テイト予想の確認です。ラマヌジャンの保型形式は、(%o37)というq級数で表される保型形式です。 (%i36) load("qsexpand.sse2f")$ (%i37) ram:q*product((1-q^n)^24,n,1,inf); $$ \tag{%o37} q\,\prod_…

-数学- 佐藤テイト予想(テイラーの定理)の計算による確認(その2)

キティーが一杯 佐藤テイト予想はもともと、\( \frac{\left| \mathrm{\%Nsolve}\left(E , p\right)-p \right| }{2\,\sqrt{p}}=\cos \vartheta_{p} \)を満たす\(\vartheta_{p} \)の分布という形で述べられています。 しかし、テイラー教授の解説では、\( \fra…

-数学- 佐藤テイト予想(テイラーの定理)の計算による確認(その1)

デザート 最近の幾つかの記事で、総積を高速に計算したり、楕円曲線の法pでの解を高速に求めるプログラムを紹介し、それを使って谷山志村対応を具体例で確認してきました。このような計算ができるようになると、やってみたいのが、佐藤テイト予想のグラフ作…

-数学- 楕円曲線を様々な法pで還元する際の注意点

東池袋 Adomani 楕円曲線にはワイエルシュトラスの標準形( \( y^2=x^3+a\,x+b \) )という分かりやすい形があるにもかかわらずしばしば(%o1)のような形で書かれます。また標数2や3の有限体を係数とする場合にはワイエルシュトラス標準形は使えない、という記…

-数学- 楕円曲線の法pでの解の個数をより高速に求める

東池袋 Adomani 谷山志村対応をいくつかの楕円曲線で確認しました。その際に与えられた楕円曲線の法pでの解の個数を総当たりで求めていました。これを1000倍くらい高速化してみましょう。 (%i1) Nsolve(elc,p):=block([c:0,evelc], for x:0 while x

-数学- アイヒラーによる谷山・志村対応の例

近所の林 もう一つ、谷山・志村対応の例を計算してみましょう。まず楕円曲線のmod pでの解の個数を数える関数を定義します。 (%i5) Nsolve(elc,p):=block([c:0,evelc], for x:0 while x

-数学- 数学ガール・フェルマーの最終定理10.6 谷山志村の定理

梨の花 結城浩さんの著書「数学ガール フェルマーの最終定理」では第10章で、ワイルズによる証明の流れが、ミルカさんによって語られます。もちろんそこで大事なのが、谷山志村予想です。ミルカさんは具体例として、 $$ q\,\prod_{n=1}^{\infty }{\left(1-q^…

This is a test.
天気